APPLICATION OF 19F MAGNETIC RESONANCE IMAGING FOR THE STUDY OF DRUGS EFFICACY EX VIVO

Dorota Bartusik1 and Boguslaw Tomanek1,2,3,4

1National Research Council Canada, Institute for Biodiagnostics (West), Calgary, Alberta, Canada; 2Cross Cancer Institute, Department of Medical Physics, Edmonton, Alberta, Canada; 3Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland; 4University of Alberta, Department of Oncology, Edmonton, Alberta, Canada

Oncology is the major beneficiary of pre-clinical and clinical applications of 19F NMR. 19F nuclei is used in pharmaceutical investigations of anti-cancer drugs because 19F stabilizes drugs and is responsible for interactions with intracellular microenvironment, thus drugs efficacy.

The aim of our study was to apply 19F Magnetic Resonance Imaging at 9.4 T (Cross Cancer Institute, Edmonton, Canada) to observe drug efficacy. We labeled Herceptin (Trastuzumab, Genentech Inc., San Francisco, CA) with fluorine in the form of perfluorocarbon (PFCE, perfluoro-15-crown-5-ether). For the study we selected human breast cancer cell line MCF-7 with stable positive over-expression of HER-2 protein. On the cell surface HER-2 is recognized as Herceptin receptor. As control we used Human mammary epithelial cells (HMEC). The three dimensional cell cultures were established using Hollow Fiber Bioreactor (HFB, FiberCell System Inc., Frederick, MD). 19F MRI was used for visualization of the cellular uptake of new fluorine labeled Herceptin.

We observed that the oil-water emulsion of Herceptin with PFCE was more efficient than Herceptin alone in MCF-7 culture. Normal (HMEC) cells did not respond to any treatment. A significant correlation between duration of treatments and MCF-7 cells viability was observed. 19F signal intensity increased due to 19F uptake, however the cells that were successfully treated were no longer possible for viability assays with trypan blue. The use of HFB device allowed high-density 3-D cell cultures in the reproducible experimental setup and provided controlled conditions during biochemical and MR study.