STUDIES OF BIOMOLECULES AND THEIR COMPLEXES
BY NUCLEAR MAGNETIC RELAXATION

Andrzej Ejchart

Institute of Biochemistry and Biophysics, Polish Academy of Sciences,
Pawińskiego 5A, 02-106 Warszawa

Many biochemical processes, which are essential for life, are dependent on the
information transfer between the biomolecules which occurs via conformational changes. It is
believed that intramolecular motions are one of the most important factors which determine
basic physico-chemical properties, biological activity, and also interactions among
biomolecules. Nuclear magnetic relaxation is a unique experimental method giving insight
into dynamic processes existing in biomolecules and covering a broad range of time scales.
Since most of biomolecules tumble slowly enough to be outside the extreme narrowing region
the multiple field studies are of great importance.

Oligosaccharides: lactose and fucosyllactoses - 13C study

Overall and internal motions of lactose and its three fucosylated derivatives were
studied using relaxation data of 13C nuclei at two magnetic fields. The relaxation data of the
inger carbons in calctose and lactosyl core of its derivatives were well described by the axially
symmetric motion of the molecule. However, a bistable jump model of internal motion was
required to interpret relaxation data in fucose residues [1].

Supramolecular complexes: cyclodextrins and their complexes - 13C and 1H study

Cyclodextrins, CDs, are macrocyclic oligosaccharides composed of 6-, 7-, 8- or more
glucopyranoside units. The interest in CD is triggered by their theoretical importance as
enzyme models on one hand and by their numerous practical applications, in particular, in the
pharmaceutical industry as drug carriers since CD containers solubilize and stabilize included
drugs. CDs are chiral. As such, they exhibit chiral recognition, i.e., they differentiate
enantiomeric species, forming diastereomeric complexes [2].

13C nuclear spin relaxation processes in seven subsequent cyclodextrins (from six-
membered α to twelve-membered η) were investigated at three magnetic fields. The internal
dynamics in α-CD and β-CD seem to be faster than the overall molecular tumbling, while for
higher CDs the opposite is true.

1:2 complexes of camphor enantiomers with α-CD in 2H$_2$O manifested differences in
longitudinal and transverse relaxation rates of camphor methyl protons owing to chiral
recognition [3]. The relaxation data obtained at two magnetic fields were quantitatively
analyzed using the model of anisotropic overall tumbling with internal motion. Anisotropic
tumbling of camphor molecules provided information on the orientation of the guest in the
host capsule that for the complex under study could not be obtained by other methods [4].

Protein backbone dynamics - 15N study

NMR spectroscopy combined with isotopic labeling provides access to NMR
parameters of almost every atom in a protein molecule. In turn, many of the NMR derived
parameters are sensitive to protein dynamics. Magnetic relaxation of 15N amide nuclei allows
to monitor motions of protein backbone within the wide range of timescales from picoseconds
to seconds. This approach of probing dynamics of N–H groups allows characterization of
motions over most of the protein backbone [5].

The ribosome-associated cold shock response protein Yfia of Escherichia coli in the
free state is built up of two structural segments, a rigid N-terminal part and a flexible C-
terminal tail. The backbone dynamics of Yfia protein was studied by 15N nuclear magnetic
relaxation at three magnetic fields and analyzed using model-free approach. The backbone
dynamics of Yfia protein is strongly diversified. The overall tumbling of the rigid N-terminal part comprising 91 amino acid residues is typical for native proteins, whereas the intense local motions within the C-terminal part (22 amino acid residues) are characteristic for the unstructured or denatured proteins. A simultaneous appearance of so different dynamic behaviours in the same protein molecule is very unusual [6].

The PinA protein from the psychrophilic archaeon *Cenarchaeum symbiosum* (PinA) is the first described parvulin-like peptidyl-prolyl isomerase from the archaeal Kingdom responsible for important biological processes. The global and local backbone dynamics of PinA were determined by 15N nuclear magnetic relaxation at two magnetic fields. The structure of PinA is relatively rigid; only one stretch of residues comprising β_10-helix III and the following turn displayed significant mobility in the micro- to millisecond time scale. On the other hand, these residues were the most affected by ligand binding pointing out to the catalytic site usually identified basing on the increased local dynamics [7].

S100A1 belongs to EF-hand superfamily of calcium binding proteins. It can be treated as a representative of the S100 protein family because of its amino acid sequence, three-dimensional structure, and biological function as a calcium signal transmitter. It is a homodimer of noncovalently bound subunits. Magnetic relaxation of backbone 15N amide nuclei of human S100A1 protein was studied at three magnetic fields and analyzed using model-free approach. Dynamics behaviour of three forms of S100A1, calcium-free, calcium-loaded and thionylated at unique cysteine residue, were compared in terms of structural changes induced by calcium binding and thionylation [8,9].

References