NMR TOP SIGNALS OF THE 27Al IN SOLID SOLUTIONS BASED ON THE YAG CRYSTAL

Piotr Stepień, Marcin Olszewski, Nikolaj Sergeev, Bohdan Padlyak

Division of Solid State Physics, Institute of Physics, University of Szczecin

Spectroscopy Sector, Institute of Physical Optics, 23 Dragomanov Str., 79-005 Lviv, Ukraine

and Division of Spectroscopy of Functional Materials, Institute of Physics, University of Zielona Góra

The Two-dimensional One Pulse (TOP) experiment is the simplest 2D – experiment [1-4]. In this experiment 2D signal $s(t_1,t_2)$ of the sample, which rotates with frequency ω_R is obtained from identical 1D signals - free induction decays (FID), separated by $t_R = 2\pi/\omega_R$ in both t_1 and t_2 dimensions. The main strength of TOP method lies in its rapid interpretation of MAS signals of half-integer quadrupolar nuclei [3]. In [1-3] affirms that TOP spectroscopy leads to a better resolution of information disguised in conventional 1D MAS spectra and it is an ideal method for study of satellite transition of quadrupolar nuclei. In this communication we represent the application of TOP method to study of 27Al 2D – spectra of nominally pure and Cr-doped yttrium-aluminium garnet YAG ($Y_3Al_5O_{12}$ and $Y_3Al_5O_{12}$:Cr) crystals.

In Fig. 1 and Fig. 2 are presented the 27Al MAS NMR spectra obtained for powdered crystalline samples $Y_3Al_5O_{12}$ and $Y_3Al_5O_{12}$:Cr. All 27Al MAS NMR spectra, which are observed in YAG, contain two peaks corresponding to the tetragonal (AlO_4) and octahedral (AlO_6) structural atomic groups. The simulation of the experimental 27Al MAS NMR spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_5O_{12}$:Cr give the fractions of the AlO_6 and AlO_4 groups: $N(AlVI) / N(AlIV) \approx 0.67$ for YAG and $N(AlVI) / N(AlIV) \approx 0.85$ for YAG:Cr. So the doping by Cr of the $Y_3Al_5O_{12}$ crystals leads to variation of the occupation by Al atoms both octahedrally- and tetrahedrally-coordinated sites of the garnet lattice.

![Fig. 1. The theoretical (a) and experimental (b) curves for 27Al MAS NMR spectrum of the nominally-pure polycrystalline $Y_3Al_5O_{12}$ sample.](image1)

![Fig. 2. The theoretical (a) and experimental (b) curves for 27Al MAS NMR spectrum of the nominally-pure Cr-doped polycrystalline $Y_3Al_5O_{12}$:Cr sample.](image2)

The isotropic chemical shifts (δ_{iso}), quadrupolar coupling constants (C_Q) of the 27Al nuclei in the AlO_4 and AlO_6 structural groups obtained by Dmfit program [5] are presented in Table 1.
Table 1. Quadrupole coupling constants (C_Q), isotropic chemical shifts (δ_{iso}), and the broadening parameters ($\Delta \nu_L$) of the Lorentzian function, for Al_{VI} and Al_{IV} in the un-doped and Cr-doped YAG crystals. The asymmetry parameter $\eta = 0$.

<table>
<thead>
<tr>
<th>The Al sites in YAG crystal</th>
<th>Un-doped YAG</th>
<th>Cr-doped YAG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_Q(MHz)</td>
<td>δ_{iso}(ppm)</td>
</tr>
<tr>
<td>Tetrahedral</td>
<td>6.1</td>
<td>82</td>
</tr>
<tr>
<td>Octahedral</td>
<td>0.6</td>
<td>5.38</td>
</tr>
</tbody>
</table>

In Fig. 3 and Fig. 4 are presented the 27Al TOP NMR spectra obtained for powdered crystalline samples Y$_3$Al$_5$O$_{12}$ and Y$_3$Al$_5$O$_{12}$:Cr.

![Fig. 3](image1.png)
![Fig. 4](image2.png)

Fig. 3. The 27Al TOP spectrum of YAG with different projections of 2D-spectrum.

Fig. 4. The 27Al TOP spectrum of YAG:Cr with different projections of 2D-spectrum.

From comparison of Fig. 3 and Fig. 4 we conclude that the TOP MAS NMR spectroscopy is a sensitive and powerful method for investigating the local structure of main structural units in ordered and disordered solids and the redistribution of atoms between different sites caused by doping impurities.

