Picture of Dominik CzerniaRoom: 2201
tel.: (+48) 12 662 8145
e-mail:  czernia@chemia.edu.pl
orcid.org/0000-0003-3201-3765
researchgate.net/profile/Dominik-Czernia

PhD obtained in 2022 from the Institute of Nuclear Physics PAN.

Methodology:

AC susceptometry / DC magnetometry, quantum-mechanical calculations, phenomenological models

Field of interests:

Molecular magnetism, magnetocaloric effect, magnetic relaxations, light-induced and irradiation-induced changes in magnetic properties of materials

Projects:

2018-2023, Minister of Science and Higher Education, Poland (principal investigator): Diamond Grant, Magnetic properties of molecular magnets with defects induced by low-energy ion irradiation;

2020-2023, National Science Centre, Poland (contractor): SONATA 14, Rotating and pressure-induced magnetocaloric effect in molecular magnets;

2023-2024, National Science Centre, Poland (principal investigator): MINIATURA 7, Quantum spin liquids in molecular magnets;

2024-2027, National Science Centre, Poland (principal investigator): SONATINA 8, Quantum critical refrigeration in molecular materials.

Publications:

  1. D. Czernia, M. Perzanowski, B. Nowicka, D. Pinkowicz, A. Maximenko, P. Konieczny,
    Plasma-Enhanced Magnetic Transition in 3D MnII–NbIVOctacyanidometalate Magnetic Sponge,
    (in review)
  2. L. Tacconi, A. S. Manvell, M. Briganti, D. Czernia, H. Weihe, P. Konieczny, J. Bendix, M. Perfetti,
    Exploiting High Order Magnetic Anisotropy for Advanced Magnetocaloric Refrigerants,
    Angew. Chem. Int. Ed. e202417582 (2024), doi: 10.1002/anie.202417582,
    paper text: https://onlinelibrary.wiley.com/doi/10.1002/anie.202417582;
  3. D. Czernia, P. Konieczny, M. Perzanowski, D. Pinkowicz,
    Plasma Treatment as an Unconventional Molecular Magnet Engineering Method,
    Acta Phys. Pol. A, 145 (2024) 114-117, doi: 10.12693/APhysPolA.145.112,
    paper text: http://appol.ifpan.edu.pl/index.php/appa/article/view/145_114;
  4. R. Pełka, K. Szałowski, M. Rajnak, W. Sas, D. Czernia, P. Konieczny, J. Kobylarczyk, M. Mihalik, P. Kögerler,
    Low-temperature magnetocaloric effect of the polyoxovanadate molecular magnet {VIV/V12As8}: An experimental study,
    J. Magn. Magn. Mater., 591 (2024) 171722, doi: 10.1016/j.jmmm.2024.171722,
    paper text: https://www.sciencedirect.com/science/article/pii/S0304885324000118;
  5. D. Czernia, P. Konieczny, E. Juszyńska-Gałązka, M. Perzanowski, J. Lekki, A.B. González Guillén, W. Łasocha
    Influence of proton irradiation on the magnetic properties of two-dimensional Ni(II) molecular magnet,
    Sci. Rep., 13 (2023) 14032, doi: 10.1038/s41598-023-41156-8,
    paper text: https://www.nature.com/articles/s41598-023-41156-8;
  6. P. Konieczny, D. Czernia, T. Kajiwara,
    Rotating magnetocaloric effect in highly anisotropic TbIII and DyIII single molecular magnets,
    Sci. Rep., 12 (2022) 16601, doi: 10.1038/s41598-022-20893-2,
    paper text: https://www.nature.com/articles/s41598-022-20893-2;
  7. P. Konieczny, W. Sas, D. Czernia, A. Pacanowska, M. Fitta, R. Pełka,
    Magnetic cooling: a molecular perspective,
    Dalton T., 51 (2022) 12762-80, doi: 10.1039/d2dt01565j,
    paper text: https://pubs.rsc.org/en/content/articlelanding/2022/DT/D2DT01565J;
  8. T.M. Muzioł, N. Tereba, R. Podgajny, R. Pełka, D. Czernia, M. Wiśniewski, S. Koter, G. Wrzeszcz,
    Sorption and Magnetic Properties of Oxalato-Based Trimetallic Open Framework Stabilized by Charge-Assisted Hydrogen Bonds,
    Int. J. Mol. Sci., 23 (2022) 1556, doi: 10.3390/ijms23031556,
    paper text: https://www.mdpi.com/1422-0067/23/3/1556;
  9. R. Pełka, P. Konieczny, D. Czernia,
    Effective spectroscopic factor of the doublet ground state: A useful tool for comparison with outcome of EPR experiments,
    Physica B, 581 (2020) 411960, doi: 10.1016/j.physb.2019.411960,
    paper text: https://www.sciencedirect.com/science/article/pii/S0921452619308397;
  10. O. Pastukh, P. Konieczny, D. Czernia, M. Laskowska, M. Dulski, Ł. Laskowski,
    Aging effect on the magnetic properties of Mn12-stearate single-molecule magnets anchored onto the surface of spherical silica nanoparticles,
    Mat. Sci. Eng. B-Solid., 261 (2020) 114670, doi: 10.1016/j.mseb.2020.114670,
    paper text: https://www.sciencedirect.com/science/article/pii/S092151072030177X?via%3Dihub;
  11. T. Korzeniak, S. Sasmal, D. Pinkowicz, W. Nitek, R. Pełka, D. Czernia, O. Stefańczyk, B. Sieklucka,
    Chiral Photomagnets Based on Copper(II) complexes of 1,2-Diaminocyclohexane and Octacyanidomolybdate(IV) Ions,
    Inorg. Chem., 59 (2020) 5872-5882, doi: 10.1021/acs.inorgchem.9b03511,
    paper text: https://pubs.acs.org/doi/10.1021/acs.inorgchem.9b03511;
  12. D. Czernia, R. Pełka, M. Zentková, P. Konieczny, D. Pinkowicz,
    Powder Sample Susceptibility for Single Ion Magnets with S=1,3/2 with Rhombic Anisotropy,
    Acta Phys. Pol. A, 137 (2020) 948-951, doi: 10.12693/APhysPolA.137.948,
    paper text: http://przyrbwn.icm.edu.pl/APP/PDF/137/app137z5p110.pdf;
  13. P. Konieczny, Ł. Michalski, R. Podgajny, S. Chorąży, R. Pełka, D. Czernia, S. Buda, J. Młynarski, B. Sieklucka, T. Wasiutyński,
    Self-enhancement of rotating magnetocaloric effect in anisotropic two-dimensional (2D) cyanido-bridged MnII–NbIV molecular ferrimagnet,
    Inorg. Chem., 56 (2017) 2777-2783, doi: 10.1021/acs.inorgchem.6b02941,
    paper text: http://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.6b02941;
  14. P. Konieczny, R. Pełka, D. Czernia, R. Podgajny,
    Rotating Magnetocaloric Effect in an Anisotropic Two-Dimensional CuII[WV(CN)8 ]3- Molecular Magnet with Topological Phase Transition: Experiment and Theory,
    Inorg. Chem., 56 (2017) 11971-980, doi: 10.1021/acs.inorgchem.7b01930,
    paper text: http://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.7b01930;