Canted antiferromagnetic order in EuZn₂As₂ single crystals

<u>Damian Rybicki</u>^a, Zbigniew Bukowski^b, Michał Babij^b, Łukasz Gondek^a, Janusz Przewoźnik^a, Jan Żukrowski^a, Czesław Kapusta^a

^aAGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland
^bInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland ryba@agh.edu.pl

Compounds containing Eu show a vast range of unique physical properties due to the interplay of electronic and magnetic properties, which can lead to a nontrivial electronic topology combined with magnetic order. We report on the growth of trigonal (P3m1 space group) Eu Zn_2As_2 single crystals and on the studies of their structural, electronic and magnetic properties. A range of experimental techniques was applied including X-ray diffraction, electron microscopy, magnetic susceptibility, magnetization, heat capacity and Mössbauer spectroscopy in the study. We found that Eu has solely a 2+ valence state and its magnetic moments below $T_N = 19.2$ K form a canted antiferromagnetic structure, tilted from the basal plane [1].

We acknowledge financial support by National Science Centre, Poland (Grant No. 2018/30/E/ST3/00377 and 2017/25/B/ ST3/02868). Part of the work was performed with the apparatus purchased within the IDUB Project.

[1] Z. Bukowski, D. Rybicki, M. Babij, J. Przewoźnik, Ł. Gondek, J. Żukrowski, Cz. Kapusta, Scientific Reports 12, 14718 (2022)