Publications


Fred Monte Carlo and Radiobiology

  1. C. Granja et al. Wide-Range Tracking and LET-Spectra of Energetic Light and Heavy Charged Particles. Submitted to NIMA (pdf)
  2. P. Stasica et al. A simple approach for experimental characterization and validation of proton pencil beam profiles. Submitted to Frontiers in Physics (pdf)
  3. J. Gajewski, M. Garbacza, C.W. Chang, K. Czerska, M. Durante, N. Krah, K. Krzempek, R. Kopeć, L. Lin, N. Mojżeszek, V. Patera, M. Pawlik-Niedzwiecka, I. Rinaldi, M. Rydygier, E. Pluta, E. Scifoni, A. Skrzypek, F. Tommasino, A. Schiavi, A. Rucinski Commissioning of GPU-accelerated Monte Carlo code Fred for clinical applications in proton therapy. Submitted to Frontiers in Physics, 2020. (pdf)
  4. J. Gajewski, et al. A GPU Monte Carlo to support clinical routine in a compact spot scanning proton therapy system. Submitted to Frontiers in Physics, 2020. (pdf)
  5. A. Rucinski, G. Battistoni, E. Góra, M. Durante, J. Gajewski, M. Garbacz, K. Kisielewicz, N. Krah, V. Patera, I. Rinaldi, B. Sas-Korczynska, T. Skóra, A. Skrzypek, F. Tommasino, E. Scifoni, A. Schiavi, SU-I-GPD-T-101: Validation of a GPU-Accelerated Monte Carlo Treatment Planning System for Proton Beam Therapy (poster)
  6. M. Garbacz, J. Gajewski, N. Krah, A. Schiavi, A. Skrzypek, A. Rucinski [P291] Comparison of beam model implementation methods for commissioning of Monte Carlo code in proton beam therapy centre. Physica Medica: European Journal of Medical Physics 52 S1:184 https://doi.org/10.1016/j.ejmp.2018.06.565
  7. M. Garbacz, G. Battistoni, M. Durante, J. Gajewski, N. Krah, V. Patera, I. Rinaldi, E. Scifoni, A. Skrzypek, F. Tommasino, A. Schiavi, A. Rucinski, Proton Therapy Treatment Plan Verification in CCB Krakow Using Fred Monte Carlo TPS Tool, IFMBE proceedings, 2019, conference paper, https://doi.org/10.1007/978-981-10-9035-6_144
  8. A. Rucinski, G. Battistoni, M. Durante, J. Gajewski, M. Garbacz, K. Kisielewicz, N. Krah, V. Patera, I. Rinaldi, B. Sas-Korczyńska, E. Scifoni, A. Skrzypek, F. Tommasino, A. Schiavi Proton therapy treatment plan verification in CCB Krakow using Fred Monte Carlo TPS tool (IUPESM WC 2018, oral presentation)
  9. M. Garbacz, …, A. Rucinski et al. GPU-accelerated Monte Carlo TPS for treatment plan verification at CCB Krakow proton therapy centre, ESTRO 37, e-poster, 2018, Radiotherapy and Oncology 127:S997, https://doi.org/10.1016/S0167-8140(18)32157-1
  10. A. Rucinski, et al. SU-I-GPD-T-126: Commissioning of a Fast Monte Carlo Code as a Quality Assurance Tool in Krakow Proton Beam Therapy Centre (2017), Scientific Abstracts and Sessions. Medical Physics, 44: 2721–3318. http://dx.doi.org/10.1002/mp.12304 (poster)
  11. A. Rucinski, et al. GPU-accelerated Monte Carlo code for fast dose recalculation in proton beam therapy. 2nd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics (programme) 08/06/2017, Kraków, Poland (proceeding)

Range monitoring

  1. A. Rucinski, J. Baran, M. Garbacz, M. Pawlik-Niedzwiecka, P. Moskal, PV-0480 Plastic-scintillator based PET detector for proton beam therapy range monitoring: preliminary study, Radiotherapy and Oncology 133(Supp. 1) 2019, p:S246-S247 doi: 10.1016/S0167-8140(19)30900-4. Presented at ESTRO 2019 (Milan).
  2. A. Rucinski, J. Baran, G. Battistoni, A. Chrostowska, M. Durante, J. Gajewski, M. Garbacz, K. Kisielewicz, N. Krah, V. Patera, M. Pawlik-Niedźwiecka, I. Rinaldi, B. Rozwadowska-Bogusz, E. Scifoni, A. Skrzypek, F. Tommasino, A. Schiavi, P. Moskal (On behalf of the J-PET collaboration) Investigations on physical and biological range uncertainties in Krakow proton beam therapy centre. Accepted for publication in Acta Physica Polonica B. Presented at 3rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics (proceeding)
  3. A. Rucinski, J. Baran, J. Gajewski, M. Garbacz, M. Pawlik-Niedźwiecka, P. Moskal (On behalf of the J-PET collaboration) MIC-WS1 II-05: Plastic scintillator based PET detector technique for proton therapy range monitoring. A Monte Carlo study. (#2989) Conference Record of 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, Australia, 2018, pp. 1-4. doi: 10.1109/NSSMIC.2018.8824654
  4. A. Rucinski, J. Baran, J. Gajewski, M. Pawlik-Niedźwiedzka, P. Moskal Plastic-scintillator based PET detector for proton beam therapy range monitoring: a feasibility study (IUPESM WC 2018, poster presentation)

Secondary Radiation Measurements

  1. A. Rucinski et al. Secondary radiation measurements for particle therapy applications: charged secondary produced by 16O beams in a PMMA target at large angle. (Submitted)
  2. A. Rucinski et al. Secondary radiation measurements for particle therapy applications: charged secondary produced by 4He and 12C beams in a PMMA target at large angle. Physics in Medicine and Biology. 2017 https://doi.org/10.1088/1361-6560/aaa36a
  3. I. Mattei, …, A. Rucinski et al. Addendum: Measurement of charged particle yields from PMMA irradiated by a 220 MeV/u 12C beam https://doi.org/10.1088/1361-6560/aa8b35
  4. I. Mattei, …, A. Rucinski et al. Secondary radiation measurements for particle therapy applications: prompt gamma produced by 4He, 12C and 16O beams in a PMMA target. Physics in Medicine and Biology 62 (4), 1438-1455. 2017 http://dx.doi.org/10.1088/1361-6560/62/4/1438
  5. M. Marafini, …,  A. Rucinski, et al. Secondary radiation measurements for particle therapy applications: nuclear fragmentation produced by 4He ion beam in a PMMA target 62 (4), 1291-1309. 2017 http://dx.doi.org/10.1088/1361-6560/aa5307

Rules for authorship (FNP Reintegration/Powroty)