Publikacje

2023

1) C. Clason, (E. Łokas) et al.,
Contribution of glaciers to water, energy and food security in mountain regions: current perspectives and future priorities,
Ann. Glaciol., 63 (2023) 73-78, doi: 10.1017/aog.2023.14,
tekst pracy: https://tiny.pl/cp4b2;

2) C. Clason, (E. Łokas) et al.,
Global variability and controls on the accumulation of fallout radionuclides in cryoconite,
Sci. Total Environ., 894 (2023) 164902, doi: 10.1016/j.scitotenv.2023.164902,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0048969723035258?via%3Dihub;

3) B. Fiałkiewicz-Kozieł, (E. Łokas, K. Kołtonik) et al.,
The Śnieżka peatland as a candidate Global boundary Stratotype Section and Point for the Anthropocene series,
Anthr. Rev., 10 (2023) 288-315, doi: 10.1177/20530196221136425,
tekst pracy: https://journals.sagepub.com/eprint/JSRB6EBBRYCRMT43AGDY/full;

4) M. Gałka, A.-C. Diaconu, A. Cwanek, L. Hedenäs, K.-H. Knorr, P. Kołaczek, E. Łokas, M. Obremska, G.T. Swindles, A. Feurdean,
Climate-induced hydrological fluctuations shape Arctic Alaskan peatland plant communities,
Sci. Total Environ., 905 (2023) 167381, doi: 10.1016/j.scitotenv.2023.167381,
tekst pracy: https://www.sciencedirect.com/science/article/abs/pii/S0048969723060084;

5) M. Sobczyk, A. Cwanek, E. Łokas, C. Nguyen Dinh, M. Marzec, P. Wróbel, T. Bajda,
Elucidating uranium interactions with synthetic Na–P1 zeolite/Ca2+-substituted alginate composite granules through batch and spectroscopic studies: Emphasizing the significance of ion exchange and complexation,
Environ. Pollut., (2023) in print, doi: 10.1016/j.envpol.2023.123184,
tekst pracy: https://www.sciencedirect.com/science/article/abs/pii/S0269749123021863;

6) E. Nalichowska, J.W. Mietelski, R. Kierepko, Z. Ustrnul, K. Gorzkiewicz, K. Brudecki, A. Kowalska,
Plutonium isotopes in the ground air layer in southern Poland (2010–2016): Source terms, seasonal variability and correlations with meteorological conditions,
J. Environ. Radioactiv., 264 (2023) 107204, doi: 10.1016/j.jenvrad.2023.107204,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0265931X23000978;

7) A. Pociecha, (D. Sala) et al.,
Appearance of the rotifer community as a potential indicator of stable paleohydrological conditions in peatlands since the Late Glacial: a case study of three wetlands in Poland,
Hydrobiologia, (2023), doi: 10.1007/s10750-023-05339-8,
tekst pracy: https://link.springer.com/article/10.1007/s10750-023-05339-8;

2022

1) K. Brudecki, E. Borkowska, K. Gorzkiewicz, M. Kostkiewicz, R. Misiak, T. Mróz, E. Nalichowska,
Reduction in radioactive internal contamination by 99mTc among medical personnel in nuclear medicine facilities with the use of respiratory tract protection measures,
J. Radioanal. Nucl. Ch., 331 (2022) 5061-5065, doi: 10.1007/s10967-022-08639-w,
tekst pracy: https://link.springer.com/article/10.1007/s10967-022-08639-w;

2) A. Cwanek, E. Łokas
Deposition chronologies in a peat bog from Spitsbergen (High Arctic) using the 210Pb dating method,
Pol. Polar. Res., 43 (2022) 291-310, doi: 10.24425/ppr.2022.143310,
tekst pracy: https://journals.pan.pl/Content/124778/PDF/2022-04-PPR-01.pdf?handler=pdf;

3) B. Fiałkiewicz-Kozieł, (E. Łokas, K. Kołtonik) et al.,
The Śnieżka peatland as a candidate for the Global Boundary Stratotype Section and Point for the Anthropocene series,
Anthr. Rev., (2022) in print, doi: 10.1177/20530196221136425,
tekst pracy: https://journals.sagepub.com/eprint/JSRB6EBBRYCRMT43AGDY/full;

4) I. Fracasso, (E. Łokas, M. Miecznik) et al.,
Climate and human impacts inferred from a 1500-year multi-proxy record of an alpine peatland in the South-Eastern Alps,
Ecol. Indic., 145 (2022) 109737, doi: 10.1016/j.ecolind.2022.109737,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S1470160X22012109;

5) E. Łokas, P. Wachniew, G. Baccolo, Pa. Gaca, K. Janko, A. Milton, J. Buda, K. Komędera, K. Zawierucha,
Unveiling the extreme environmental radioactivity of cryoconite from a Norwegian glacier,
Sci. Total Environ., 814 (2022) 152656, doi: 10.1016/j.scitotenv.2021.152656,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0048969721077342?dgcid=author;

6) J.W. Mietelski, T. Mróz, K. Brudecki, P. Janowski, B. Dziedzic,
On a risk of inhalation exposure during visits in Chernobyl exclusion zone,
J. Environ. Radioactiv., 251-252 (2022) 106972, doi: 10.1016/j.jenvrad.2022.106972,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0265931X22001631?via%3Dihub;

7) J. Miszczyk, A. Gałaś, A. Panek, A. Kowalska, M. Kostkiewicz, E. Borkowska, K. Brudecki,
Genotoxicity Associated with 131I and 99mTc Exposure in Nuclear Medicine Staff: A Physical and Biological Monitoring Study,
Cells, 11 (2022) 1655, doi: 10.3390/cells11101655,
tekst pracy: https://www.mdpi.com/2073-4409/11/10/1655;

8) A. Pisarzowska, M. Paszkowski, K. Kołtonik, B. Budzyń, M. Szczerba, M. Rakociński, J. Slama, A. Zagórska, A. Łaptaś,
Geotectonic settings of Variscan explosive volcanism in the light of Famennian tuffites provenance from southern Poland,
Earth Sci. Rev., 234 (2022) 104218, doi: 10.1016/j.earscirev.2022.104218,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0012825222003026?via%3Dihub;

9) G. Racki, S. Mazur, K. Narkiewicz, A. Pisarzowska, W. Bardziński, K. Kołtonik, D. Szymanowski, P. Filipiak, B. Kremer,
A waning Saxothuringian Ocean evidenced in the Famennian tephra-bearing siliceous succession of the Bardo Unit (Central Sudetes, SW Poland),
Geol. Soc. Am. Bull., 134 (2022) 2373-2398, doi: 10.1130/B35971.1,
tekst pracy: https://pubs.geoscienceworld.org/gsa/gsabulletin/article/doi/10.1130/B35971.1/611657/A-waning-Saxothuringian-Ocean-evidenced-in-the;

10) P. Rozwalak, (E. Łokas) et al.,
Cryoconite – From minerals and organic matter to bioengineered sediments on glacier′s surfaces,
Sci. Total Environ., 807 (2022) 150874, doi: 10.1016/j.scitotenv.2021.150874,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0048969721059520?via%3Dihub;

2021

1) A. Cwanek, E. Łokas, E.A.D. Mitchell, Y. Mazei, Pa. Gaca, J.A. Milton,
Temporal variability of Pu signatures in a 210Pb-dated Sphagnum peat profile from the Northern Ural, Russian Federation,
Chemosphere, 281 (2021) 130962, doi: 10.1016/j.chemosphere.2021.130962,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S004565352101434X;

2) S. Czerwiński, (E. Łokas, M. Miecznik) et al.,
Environmental implications of past socioeconomic events in Greater Poland during the last 1200 years. Synthesis of paleoecological and historical data,
Quaternary Science Reviews, 259 (2021) 106902, doi: 10.1016/j.quascirev.2021.106902,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0277379121001098;

3) D. Łuców, M. Lamentowicz, P. Kołaczek, E. Łokas, K. Marcisz, M. Obremska, M. Theuerkauf, S. Tyszkowski, M. Słowiński,
Pine Forest Management and Disturbance in Northern Poland: Combining High-Resolution 100-Year-Old Paleoecological and Remote Sensing Data,
Front. Ecol. Evol., 9 (2021) 747976, doi: 10.3389/fevo.2021.747976,
tekst pracy: https://www.frontiersin.org/articles/10.3389/fevo.2021.747976/full;

4) K. Zawierucha, (E. Łokas) et al.,
A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing,
J. Zool., 313 (2021) 18-36, doi: 10.1111/jzo.12832,
tekst pracy: https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/jzo.12832;

5) A. Cwanek, E. Łokas, C.N. Dinh, P. Zagórski, S.M. Singh, Ka. Szufa, E. Tomankiewicz,
90Sr level and behaviour in the terrestrial environment of Spitsbergen,
J. Radioanal. Nucl. Ch., 327 (2021) 485-494, doi: 10.1007/s10967-020-07492-z,
tekst pracy: https://link.springer.com/article/10.1007/s10967-020-07492-z;

6) D. Łuców, M. Lamentowicz, M. Obremska, M. Arkhipova, P. Kittel, E. Łokas, A. Mazurkevich, T. Mróz, R. Tjallingii, M. Słowiński,
Disturbance and resilience of a Sphagnum peatland in western Russia (Western Dvina Lakeland) during the last 300 years: a multiproxy, high-resolution study,
Holocene, 30 (2020) 1552-1566, doi: 10.1177/0959683620941064,
tekst pracy: https://journals.sagepub.com/eprint/AGB8KEJXUXA9FEZ5FS3T/full;

7) A. Cwanek, M. Eriksson, E. Holm,
The study of Canadian Arctic freshwater system toward radioactive contamination – status in 1999,
J. Environ. Radioactiv., 226 (2021) 106454, doi: 10.1016/j.jenvrad.2020.106454,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0265931X20307001?via%3Dihub;

8) A. Jany, (K. Brudecki) et al.,
Fabrication, characterization and analysis of a prototype high purity germanium detector for 76Ge-based neutrinoless double beta decay experiments,
Eur. Phys. J. C, 81 (2021) 38, doi: 10.1140/epjc/s10052-020-08781-3,
tekst pracy: https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-020-08781-3;

9) K. Gorzkiewicz, J.W. Mietelski, Z. Ustrnul, P. Homola, R. Kierepko, E. Nalichowska, K. Brudecki,
Investigations of Muon Flux Variations Detected Using Veto Detectors of the Digital Gamma-rays Spectrometer,
Appl. Sci., 11 (2021) 7916, doi: 10.3390/app11177916,
tekst pracy: https://www.mdpi.com/2076-3417/11/17/7916;

10) E. Borkowska, K. Brudecki, M. Kostkiewicz, K. Gorzkiewicz, R. Misiak, E. Nalichowska, J. Miszczyk,
T. Mróz,
99mTc internal contaminations measurements among nuclear medicine medical personnel during ventilation – perfusion SPECT lung scans,
Radiat. Environ. Biophys., 60 (2021) 389-394, doi: 10.1007/s00411-021-00905-x,
tekst pracy: https://link.springer.com/article/10.1007/s00411-021-00905-x;

2020

1) P. Wachniew, E. Łokas, K. Zawierucha
Sekretne życie lodowców,
Monografia Wydawnictwa AGH, seria „Nauka dla Ciekawych”, tom 13 (2020) 1-70, ISBN: 978-83-66364-23-3
tekst pracy:  https://www.wydawnictwoagh.pl/SEKRETNE-ZYCIE-LODOWCOW;s,karta,id,1396

2) D. Łuców, M. Lamentowicz, M. Obremska, M. Arkhipova, P. Kittel, E. Łokas, A. Mazurkevich, T. Mróz, R. Tjallingii, M. Słowiński,
Disturbance and resilience of a Sphagnum peatland in western Russia (Western Dvina Lakeland) during the last 300 years: a multiproxy, high-resolution study,
Holocene, 30 (2020) 1552-1566, doi: 10.1177/0959683620941064,
tekst pracy: https://journals.sagepub.com/eprint/AGB8KEJXUXA9FEZ5FS3T/full;

3) B. Fiałkiewicz-Kozieł, E. Łokas, M. Gałka, P. Kołaczek, F. De Vleeschouwer, G. Le Roux, B. Smieja-Król,
Influence of transboundary transport of trace elements on mountain peat geochemistry (Sudetes, Central Europe),
Quaternary Science Reviews, 230 (2020) 106162, doi: 10.1016/j.quascirev.2020.106162,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0277379119306833

4) A. Cwanek, J.W. Mietelski, E. Łokas, M.A. Olech, R. Anczkiewicz, R. Misiak,
The radioactive contamination study in south-western Greenland tundra in 2012–2013,
J. Environ. Radioactiv., 212 (2020) 106125, doi: 10.1016/j.jenvrad.2019.106125,
tekst pracy: https://reader.elsevier.com/reader/sd/pii/S0265931X19305053?token=A9BC59E6BFB1BA21E781FC62B7701CFEF726971DDA428A8B2C4320B8844CD5564324636AC758CF85CD16FB4DA55A9827;

5) A. Cwanek, J.W. Mietelski, E. Łokas, M.A. Olech, R. Anczkiewicz, R. Misiak,
Sources and variation of isotopic ratio of airborne radionuclides in Western Arctic lichens and mosses,
Chemosphere, 239 (2020) 124783, doi: 10.1016/j.chemosphere.2019.124783,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S004565351932020X;

6) J. Buda, (E. Łokas) et al.,
Biotope and biocenosis of cryoconite hole ecosystems on Ecology Glacier in the maritime Antarctic,
Sci. Total Environ., 724 (2020) 138112, doi: 10.1016/j.scitotenv.2020.138112,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0048969720316259?via%3Dihub;

7) G. Baccolo, (E. Łokas) et al.,
Cryoconite: an efficient accumulator of radioactive fallout in glacial environment,
Cryosphere, 14 (2020) 657–672, doi: 10.5194/tc-14-657-2020,
tekst pracy: https://www.the-cryosphere.net/14/657/2020/tc-14-657-2020.pdf;

8) G. Baccolo, (E. Łokas) et al.,
Artificial and natural radionuclides in cryoconite as tracers of supraglacial dynamics: Insights from the Morteratsch glacier (Swiss Alps),
Catena, 191 (2020) 104577, doi: 10.1016/j.catena.2020.104577,
tekst pracy: https://eartharxiv.org/fmbny/;

9) K. Brudecki, A. Kluczewska-Gałka, Pa. Zagrodzki, B. Jarząb, K. Gorzkiewicz, T. Mróz,
131I thyroid activity and committed dose assessment among family members of patients treated with radioactive iodine,
Radiat. Environ. Biophys., (2020) in print, doi: 10.1007/s00411-020-00860-z,
tekst pracy: https://link.springer.com/article/10.1007/s00411-020-00860-z#article-info;

10) M. Miecznik, J.W. Mietelski, A. Wójcik-Gargula, K. Brudecki, J. Dankowski,
Search for tritium in air in a room equipped with 14 MeV neutron generator with tritiated targets,
J. Environ. Radioactiv., 217 (2020) 106218, doi: 10.1016/j.jenvrad.2020.106218,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0265931X19308070?via%3Dihub;

11) K.M. Szufa, J.W. Mietelski, M.A. Olech, A. Kowalska, K. Brudecki,
Anthropogenic radionuclides in Antarctic biota – dosimetrical considerations,
J. Environ. Radioactiv., 213 (2020) 106140, doi: 10.1016/j.jenvrad.2019.106140,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0265931X19303030?via%3Dihub#!;

2019

1) M. Lamentowicz, P. Kołaczek, D. Mauquoy, P. Kittel, E. Łokas, M. Słowiński, V.E.J. Jassey, K. Niedziółka, K. Kajukało-Drygalska, K. Marcisz,
Always on the tipping point – A search for signals of past societies and related peatland ecosystem critical transitions during the last 6500 years in N Poland,
Quaternary Science Reviews, 225 (2019) 105954, doi: 10.1016/j.quascirev.2019.105954,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S0277379119304950?via%3Dihub;

2) E. Łokas, A. Zaborska, I. Sobota, Pa. Gaca, J.A. Milton, P. Kocurek, A. Cwanek,
Airborne radionuclides and heavy metals in high Arctic terrestrial environment as the indicators of sources and transfers of contamination,
Cryosphere, 13 (2019) 2075–2086, doi: 10.5194/tc-13-2075-2019,
tekst pracy: https://www.the-cryosphere.net/13/2075/2019/tc-13-2075-2019.pdf;

3) K. Brudecki, E. Borkowska, K. Gorzkiewicz, M. Kostkiewicz, T. Mróz,
99mTc activity concentrations in room air and resulting internal contamination of medical personnel during ventilation–perfusion lung scans,
Radiat. Environ. Biophys., 58 (2019) 469-475, doi: 10.1007/s00411-019-00793-2,
tekst pracy: https://link.springer.com/article/10.1007%2Fs00411-019-00793-2;

4) O. Monteiro Gil, (K. Brudecki) et al.,
A survey on emergency thyroid monitoring strategies and capacities in Europe and comparison with international recommendations,
Radiat. Meas., 128 (2019) 106086, doi: 10.1016/j.radmeas.2019.03.004,
tekst pracy: https://www.sciencedirect.com/science/article/pii/S1350448718308011;

5) K. Gorzkiewicz, J.W. Mietelski, R. Kierepko, K. Brudecki,
Low-background, digital gamma-ray spectrometer with BEGe detector and active shield: commissioning, optimisation and software development,
J. Radioanal. Nucl. Ch., (2019) in print, doi: 10.1007/s10967-019-06853-7,
tekst pracy: https://link.springer.com/article/10.1007/s10967-019-06853-7;

6) J. Miszczyk, Ka. Rawojć, A. Panek, A. Gałaś, A. Kowalska, A. Szczodry, K. Brudecki,
Assessment of the nuclear medicine personnel occupational exposure to radioiodine,
Eur. J. Radiol., 121 (2019) 108712, doi: 10.1016/j.ejrad.2019.108712,
tekst pracy: https://www.ejradiology.com/article/S0720-048X(19)30362-6/fulltext;

2018

1) K. Zawierucha, J. Buda, M. Pietryka, D. Richter, E. Łokas, S. Lehmann-Konera, N. Makowska, M. Bogdziewicz,
Snapshot of micro-animals and associated biotic and abiotic environmental variables on the edge of the south-west Greenland ice sheet,
Limnology, 19 (2018) 141–150, doi: 10.1007/s10201-017-0528-9,
tekst pracy: https://link.springer.com/article/10.1007%2Fs10201-017-0528-9;

2) M. Miecznik, J.W. Mietelski, E. Łokas, K. Kleszcz,
Modeling of the Cs137 and Sr90 contamination transportation process performed for the vicinity of National Radioactive Wastes Disposal in Różan (NE Poland),
Comput. Sci. Math. Mod., 7 (2018) 19-30, doi: 10.5604/01.3001.0012.2002,
tekst pracy: http://csmm.wat.edu.pl/sites/default/files/articles/19_30_mmiecznik_csmm_7.pdf;

3) M. Miecznik, J.W. Mietelski, E. Łokas, A. Budziak,
Study on the sorption process on geological materials of long-lived radioactive isotopes 90Sr and 137Cs in model systems with the use of short-lived isotopes of 85Sr, 134Cs,
J. Radioanal. Nucl. Ch., 316 (2018) 81-93, doi: 10.1007/s10967-018-5742-3,
tekst pracy: https://link.springer.com/content/pdf/10.1007%2Fs10967-018-5742-3.pdf;

4) E. Łokas, K. Zawierucha, A. Cwanek, K. Szufa, Pa. Gaca, J.W. Mietelski, E. Tomankiewicz,
The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia),
Scien. Reports, 8 (2018) 10802, doi: 10.1038/s41598-018-29076-4,
tekst pracy: https://www.nature.com/articles/s41598-018-29076-4;

5) S. Kasar, S. Sahoo, N. Kavasi, H. Arae, T. Aono, S. Tokonami, J. Mietelski, E. Łokas,
Search for Fukushima NPP accident traces in soil samples based on 239+240Pu analysis,
Abstr. in Proc. of the VI. Terrestrial Radioisotopes in Environment – International Conference on Environmental Protection, 22-25 May, 2018, Veszprém, Hungary, edited by: T. Kovács, E. Tóth-Bodrogi, G. Bátor, 2018, p. 74, doi: 10.18428/TREICEP-2018,
tekst pracy http://www.fe.infn.it/u/mantovani/CV/Proceedings/TREICEP_18.pdf#%5B%7B%22num%22%3A87%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C111%2C675%2C0%5D; ISBN: 978-615-00-2168-3;

6) T. Mróz, K. Szufa, M.V. Frontasyeva, V. Tselmovich, T. Ostrovnaya, A. Kornaś, M.A. Olech, J.W. Mietelski, K. Brudecki,
Determination of element composition and extraterrestrial material occurrence in moss and lichen samples from King George Island (Antarctica) using reactor neutron activation analysis and SEM microscopy,
Environ. Sci. Pollut. Res., 25 (2018) 436-446, doi: 10.1007/s11356-017-0431-2,
tekst pracy: https://link.springer.com/content/pdf/10.1007%2Fs11356-017-0431-2.pdf;

7) T. Mróz, K. Brudecki, J.W. Mietelski, M. Bartyzel, R. Misiak, A. Kornas,
Medical activated charcoal tablets as a cheap tool for passive monitoring of gaseous 131I activity in air of nuclear medicine departments,
J. Radioanal. Nucl. Ch., 318 (2018) 723-726, doi: 10.1007/s10967-018-6107-7,
tekst pracy: https://link.springer.com/article/10.1007%2Fs10967-018-6107-7;

8) K. Brudecki, A. Szczodry, T. Mróz, A. Kowalska, J.W. Mietelski,
Measurement of 131I activity in air indoor Polish nuclear medical hospital as a tool for an internal dose assessment,
Radiat. Environ. Biophys., 57 (2018) 77-82, doi: 10.1007/s00411-017-0724-3,
tekst pracy: https://link.springer.com/content/pdf/10.1007%2Fs00411-017-0724-3.pdf;

9) K. Brudecki, A. Kluczewska-Gałka, T. Mróz, B. Jarząb, P. Zagrodzki, Pa. Janowski,
131I Internal Contamination and Committed Dose Assessment Among Nuclear Medicine Medical Personnel,
Radiat. Prot. Dosim., 179 (2018) 275-281, doi: 10.1093/rpd/ncx274,
tekst pracy: https://academic.oup.com/rpd/advance-article/doi/10.1093/rpd/ncx274/4721593;