Chemical Preparations of Metal Nanoparticle-Modified Electrodes

Munetaka Oyama

Associate Professor

Department of Material Chemistry

Graduate School of Engineering

Kyoto University, Japan

Kyoto in Japan

Top Universities for Chemistry

QS World University Ranking 2018

http://www.topuniversities.com/...../chemistry

1		TIC
1.	MIT	U.S.

2.	University of Cambridge	U.K.
		O ••

- 5. Harvard University U. S.
- 6. University of Oxford U. K.
- 7. NUS Singapore
- 8. University of Tokyo Japan
- 16. Kyoto University Japan

My Research History

1991 Dr. Sci. Kyoto University

Research Associate Nagoya University

Kyoto University

Spectroelectrochemistry in Organic Solvents

2001 Associate Professor Kyoto University

Nanomaterials Laboratory

Metal Nanoparticles Modified Electrodes

Time Cited and Number of Papers

WIND BY JAPAN

Our Research Progress since 2001

Our Research Progress since 2001

Metal NPs for Electrode Materials

Original of Seed-Mediated Growth Method

Seed Solution

HAuCl₄ Sodium Citrate NaBH₄

Growth Solution

Cetyltrimethylammonium bromide

HAuCl₄ Ascorbis Acid NaOH

100 nm

Murphy and coworkers,

J. Phys. Chem. B, 105, 4065 (2001). Adv. Mater. 15, 414 (2003).

Our Seed-Mediated Growth Method

Substrate Indium Tin Oxide (ITO)

HAuCl₄ Sodium Citrate NaBH₄

Au nanospheres, diam. 4 nm

Attachment of Au Nano-seeds

2 hours

Growth Solution

Cetyltrimethylammonium bromide

HAuCl₄

Ascorbis Acid

NaOH

Two-Step Immersion

24 hours

Crystal Growth
via
Chemical Reduction

Kambayashi, Zhang, Oyama, Cryst. Growth Des., 5, 81 (2005).

Attachment and Growth of AuNPs

Crystal growth of 60 - 80 nm of Au Nanoparticles

Attachment and Growth of AuNPs

Attachment of Dispersed Au Nanoparticles

Crystal growth of 60 - 80 nm of Au Nanoparticles

Time Course of Growth of AuNPs

Fabrication of Electrodes

Surface Images of AuNPs

Crystal Growth

Amorphous

Electrochemical Impedance

Zhang, Kambayashi, Oyama, Electrochem. Commun., 6, 683 (2004).

Dr. Jingdong Zhang's Contributions

Oct. 2003 - Mar. 2005 in Kyoto

Dr. Jingdong Zhang Professor Huazhong University of Science and Technology Wuhan, China

EIS, ascorbic acid, uric acid etc.

Electrochem. Commun., 6, 683 (2004). Times Cited: 104

Electroanalysis, 17, 408 (2005).

hemoglobin Electrochim. Acta, 50, 85 (2004). Times Cited: 118

myoglobin J. Electroanal. Chem., 577, 273 (2005). Times Cited: 97

NO detection *Anal. Chim. Acta*, **540**, 299 (2005). **Times Cited: 82**

TiO₂-AuNPs Electrochem. Solid-State Lett., **8**, E49 (2005).

Collaboration with Professor Goyal

Dr. Rajendra N. Goyal Professor Emeritus Indian Institute of Technology Roorkee, India.

uric acid Indian J. Chem. A, 44, 945 (2005).

paracetamol Electrochem. Commun., 7, 803 (2005). Times Cited: 204

atenolol Electrochem. Commun., 8, 65 (2006). Times Cited: 169

nandrolone *Talanta*, **72**, 3140 (2007).

methylprednisolone acetate J. Pharm. Biomed. Anal., 44, 1147 (2007).

Collaboration with Professor Goyal

paracetamol

Goyal, Gupta, Oyama, Bachheti *Electrochem. Commun.*, **7**, 803 (2005).

Collaboration with Professor Goyal

```
guanosine and GTP
                       Anal. Chim. Acta, 581, 32 (2007).
adenosine and ATP
                       Electroanalysis, 19, 575(2007).
adenosine and guanosine Talanta, 71, 1110 (2007). Times Cited: 157
dopamine and serotonin Talanta, 72, 976 (2007). Times Cited: 196
                   J. Electroanal. Chem., 611, 140 (2007).
salbutamol
5-hydroxytryptamine and 5-hydroxyindole
                Sens. Actuators B, 134, 816 (2008). Times Cited: 179
prednisolone
                   Bioelectrochemistry, 74, 272 (2009).
dopamine and ascorbic acid J. Electroanal. Chem., 631, 58 (2009).
norepinephrine Sens. Actuators B, 153, 232 (2011).
paracetamol and epinephirine Anal. Chim. Acta, 693, 35 (2011).
tryptophan Talanta, 85, 2626 (2011).
```

Dr. Chang Gang's Contributions

Dec. 2003 – Sep. 2006 in Kyoto

Dr. Gang Chang Professor Hubei University Wuhan, China

Silver Nanoparticle-Attached ITO

Chang, Oyama, Hirao, *J. Phys. Chem. B,* **109**, 1204 (2005).

Palladium Nanoparticle-Attached ITO

Chang, Oyama, Hirao, *J. Phys. Chem. B,* **110**, 20362 (2006).

Platinum Nanoparticle-Attached ITO

Chang, Oyama, Hirao, *J. Phys. Chem. B,* **110**, 1860 (2006).

At Huazhong University of Science & Technology Wuhan China, May 2017

Prof. Gang Chang
Hubei University, Wuhan, China

Prof. Jingdong Zhang Huazhong University of Science & Technology (HUST), Wuhan, China

Dr. Ali Umar's Contributions

May 2004 – Mar. 2007 in Kyoto

Dr. Akrajas Ali Umar
Associate Professor
Institute of Micro-Engineering and
Nanoelectronics (IMEN)
Universiti Kebangsaan Malaysia (UKM)
Malaysia

Dr. Nouneh Khalid's Contributions

Sep. 2007 – May. 2009 in Kyoto

Dr. Khalid Nouneh
Assistant Professor
Universite Ibn Tofail
Morocco

Growth and optical features of AgNPs on ITO Journal of Alloys Compounds, **509**, 2631 (2011).

Synthesis and optical features of NiNPs on ITO Journal of Alloys Compounds, **509**, 5882 (2011).

Dr. Md. Abdul Aziz's Contributions

Nov. 2009 – Oct. 2011 in Kyoto

Dr. Md Abdul Aziz
Research Scientist
King Faud University of
Petroleum and Minerals
Saudi Arabia

Thermal-driven attachment of AuNPs on ITO
Journal of Nanoparticle Research, **15**, 1618 (2013).

Preparation monodispersed carboxylate-functioalized AuNPs Gold Bulletin, **47**, 127 (2014).

Dr. Xiaomei Chen's Contributions

Nov. 2012 – Oct. 2014 in Kyoto

Dr. Xiaomei Chen Professor Jimei University China

Dr. Xiaomei Chen's Contributions

Nov. 2012 – Oct. 2014 in Kyoto

PdNPs+GO, H₂O₂ Electrochim. Acta, **97**, 398 (2013).

PtNPs+RGO, Oxalic Acid Nanoscale, 5, 5779 (2013).

PtPdNCs+RGO, MeOH Carbon, **66**, 387 (2014).

PtPdNPs+RGO, **EtOH** J. Mater. Chem. A, **2**, 315 (2014).

PtPdNCs+RGO, Glucose Microchim. Acta, 181, 783 (2014).

AuPdNPs+RGO, 4-nitrophenol J. Mater. Chem. A, 2, 5668 (2014).

AuNPs+RGO, 3,3,5,5-TMB Dalton Trans., **43**, 7449 (2014).

PtPdNDs+RGO, 3,3,5,5-TMB Sens. Actuators B, **201**, 286 (2014).

PdNPs+RGO, 4-nitrophenol Chem. Lett., **43**, 919 (2014).

Prof. Ivan Kityk
Czestochowa University
of Technology,
Poland

Circularly polarized light-induced electrogyration Physica E, **2005**, 27, 420.

Acoustical circularly polarized gyration Physica E, **2005**, 28, 178.

Nonlinear optical properties
Nanotechnology, **2005**, 16, 1687.

Control of the plasmon absorption with a two-color excitation Journal of Applied Physics, **2005**, 98, 084304.

Circular acoustogyration effect Applied Optics, **2005**, 44, 6905.

Kinetics of photoinduced changes Philosophical Magazine Letters, **2005**, 85, 549.

Non-linear optical properties
Physica E, **2006**, 31, 38.

Luminescence of erbium doped AgNPs

Applied Surface Science, 253, 1626 (2006).

Acoustically induced nonlinear optics of PdNPs Physica E, **35**, 121 (2006).

Second order optical effects of PdNPs

Journal of Modern Optics, 55, 187 (2008).

Nonlinear optical properties of NiNPs

Optical & Laser Technology, 40, 499 (2008).

Nonlinear optical properties of AuNPs on ZnO

Nanotechnology, 19, 18709 (2008).

Journal of Nano Research, 2, 31 (2008).

Laser treatment of AgNPs

Materrals Chemistry and Physics, 113, 187 (2009).

Superlattices and Microstructures, 46, 637 (2009).

- Optical features of AuNPs on ITO
 Optical Communications, **284**, 245 (2011).
- Photoinduced absorption of AgNPs on ITO Journal of Alloys Compounds, **509S**, S424 (2011).
- Picosecond laser treatment of AgNPs on ITO Journal of Alloys Compounds, **509**, 9663 (2011).
- Pump-probe third harmonic generation of AuNPs on ITO Materials Letters, **74**, 226 (2012).
- Laser stimulated optical features of AuNPs on ITO Physica E, **44**, 1182 (2012).

- Laser operated optoelectronic devices of AuNPs on FTO
 J. Mater. Sci: Materials in Electronics, **24**, 2422 (2013).
- Second harmonic generation in LiB₃O₅ in AgNP/ITO

 J. Mater. Sci: Materials in Electronics, **24**, 4204 (2013).
- AuNPs aggregation in laser induced anisotropy of ITO Journal of Alloys Compounds, **585**, 393 (2014).
- Light reflection reduction of AgNPs attached Al-doped ZnO Physica E, **56**, 283 (2014).
- Nonlinear optical features of BiB₃O₆/PVA on Al-doped ZnO Physica E, **64**, 1 (2014).
- Third harmonic generation of AuNPs on Al-doped and Ga-doped ZnO Physica E, **71**, 91 (2015).

AuNPs/ITO prepared by Dr. Aziz

5, 10, 20 nm AuNPs + APTMS + ITO

Competitive attachment of commercially available AuNPs

Oyama, Fujita, Anal. Sci., 31, 597 (2015).

5, 10, 20 nm AuNPs + APTMS + ITO

Competitive attachment of commercially available AuNPs

Oyama, Fujita, Anal. Sci., 31, 597 (2015).

Failures in Modifications

Gold nanoparticles (AuNPs)

on indium doped tin oxides (ITO)

Progress since Oct. 2016

Failure of the preparations

Lower density attachment

Strange islands of linker molecules

Gathering

Progress since Oct. 2016

Jan. 2017 - Jun. 2017

As struggles of trials, the effects of the kinds of ITO substrates and the concentrations of linker molecules, APTMS.

Jul. 2017

As a final trial, we tried to change the source of AuNPs.

Gold Colloid Solutions

Previous Sigma

tannic acid capped (5, 10, 20 nm)

Present Sigma-Aldrich, but actually Cytodiagnostics (Canada)

stabilized suspension in citrate buffer (5, 10, 15, 20, 30, 40, 50, 60, 80, 100 nm)

stabilized suspension in 0.1 mM PBS, reactant free (5, 10, 15, 20, 30, 40, 50, 60, 80, 100, 150, 200, 250, 300, 400 nm)

Jul. 2017

stabilized suspension in citrate buffer

Sep. 2017 4% APTMS

10 nm

15 nm

20 nm

30 nm

An Important Point for Modification

thiols

small molecules

citrate ions

Frens, Nature, **1973**, *241*, 20.

surfactants

Brust et al., JCS Chem. Commun., 1994, 801.

Oct. 2017 4% APTMS

10 nm

15 nm

20 nm

30 nm

Oct. 2017 2% APTMS

10 nm

15 nm

20 nm

30 nm

Preparations for Professor Kityk

Various sized gold nanoparticles (AuNPs)

on fluorine doped tin oxides (FTO)

Sigma-Aldrich

Oct. 2017 2% APTMS

10 nm

TELIN DAY SIJER C SET - SETV BRAN MINING CHE

15 nm

20 nm

30 nm

Sigma-Aldrich

Oct. 2017 2% APTMS

10 nm 50 nm

Sigma-Aldrich

Oct. 2017 2% APTMS

10 nm

TELIN DAY SIJER C SET - SETV BRAN MINING CHE

15 nm

20 nm

30 nm

Preparations for Professor Laskowski

Silver nanoparticles (AgNPs)

on fluorine doped tin oxides (FTO)

Silver Colloid Solutions

Sigma-Aldrich (now Merch), but actually nanoComposix (USA)

0.02 mg/mL in aqueous buffer, contains sodium citrate as stabilizer (10, 20, 40, 60, 100 nm)

BBI solutions (previous, BB international Ltd.)

Silver nanoparticles (20, 40, 60, 80, 100 nm)

Cytodiagnostics

From Poland

Nov. 2017 2% APTMS

Sigma-Aldrich

BBI solutions

AgNPs: 20 nm

Systematic Comparison of Modification

Dec. 2017 2% APTMS

FTO from Sigma-Aldrich

FTO from Poland

Systematic Comparison of Modification

Dec. 2017 2% APTMS

FTO from Sigma-Aldrich

FTO from Poland

AgNPs: 20 nm, 0.02 mg/mL in buffer, contains sodium citrate as stabilizer

Systematic Comparison of Modification

Dec. 2017 4% APTMS

FTO from Sigma-Aldrich

FTO from Poland

AgNPs: 20 nm, 0.02 mg/mL in buffer, contains sodium citrate as stabilizer

Recent Development of Metal Nanoparticle-Modified Electrodes

AuNP-Modified Ni Electrode

Galvanic Replacement Reaction

$$Ni^{2+} + 2e^{-} \rightleftharpoons Ni(s)$$
 $E^{0} = -0.24 \text{ V}$
 $AuCl_{2}^{-} + e^{-} \rightleftarrows Au(s) + 2Cl^{-}$ $E^{0} = 1.15 \text{ V}$
 $AuCl_{4}^{-} + 2e^{-} \rightleftarrows AuCl_{2}^{-} + 2Cl^{-}$ $E^{0} = 0.93 \text{ V}$

$$2AuCl_4^- + 3Ni(s) \rightarrow 2Au(s) + 3Ni^{2+} + 8Cl^-$$

During just immersing an electrode in a solution containing only HAuCl₄

Ni Electrode Treated with HAuCl₄

1.0 × 10⁻³ M HAuCl₄ Immersion Time 1 hour

50 μm —

10 μm —

1.0 × 10⁻⁴ M HAuCl₄ Immersion Time 1 hour

50 μm —

10 μm -

IINI

Immersion Time: 1 hour

1.0 mM ferrocyanide

 $1.0 \times 10^{-5} \text{ M}$

 $1.0 \times 10^{-6} \text{ M}$

 $1.0 \times 10^{-7} \text{ M}$

Immersion Time: 1 hour

HAuCl₄

1.0 mM uric acid

Immersion Time: 1 hour

10 mM glucose

HAuCl₄

 $1.0 \times 10^{-4} \text{ M}$

 $1.0 \times 10^{-5} \text{ M}$

 $1.0 \times 10^{-6} \text{ M}$

Summary

Wet Chemical Synthesis of Metal Nanoparticles

Potentials for Nanostructuring

and Electrochemical Applications

Easy Synthesis in Aqueous Solution

at Room Temperature

At moment, we would like to focus the modification of noble metal nanoparticles on Ni or Ti electrodes

Acknowledgements

All collaborators, coauthors, posdocs and students in my group.

The Ministry of Education, Culture, Sports, Science and Technology, Japan

Japan Society for the Promotion of Science (JSPS)

